(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
plus_x#1(0, x8) → x8
plus_x#1(S(x12), x14) → S(plus_x#1(x12, x14))
map#2(plus_x(x2), Nil) → Nil
map#2(plus_x(x6), Cons(x4, x2)) → Cons(plus_x#1(x6, x4), map#2(plus_x(x6), x2))
main(x5, x12) → map#2(plus_x(x12), x5)
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
plus_x#1(0', x8) → x8
plus_x#1(S(x12), x14) → S(plus_x#1(x12, x14))
map#2(plus_x(x2), Nil) → Nil
map#2(plus_x(x6), Cons(x4, x2)) → Cons(plus_x#1(x6, x4), map#2(plus_x(x6), x2))
main(x5, x12) → map#2(plus_x(x12), x5)
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
plus_x#1(0', x8) → x8
plus_x#1(S(x12), x14) → S(plus_x#1(x12, x14))
map#2(plus_x(x2), Nil) → Nil
map#2(plus_x(x6), Cons(x4, x2)) → Cons(plus_x#1(x6, x4), map#2(plus_x(x6), x2))
main(x5, x12) → map#2(plus_x(x12), x5)
Types:
plus_x#1 :: 0':S → 0':S → 0':S
0' :: 0':S
S :: 0':S → 0':S
map#2 :: plus_x → Nil:Cons → Nil:Cons
plus_x :: 0':S → plus_x
Nil :: Nil:Cons
Cons :: 0':S → Nil:Cons → Nil:Cons
main :: Nil:Cons → 0':S → Nil:Cons
hole_0':S1_0 :: 0':S
hole_Nil:Cons2_0 :: Nil:Cons
hole_plus_x3_0 :: plus_x
gen_0':S4_0 :: Nat → 0':S
gen_Nil:Cons5_0 :: Nat → Nil:Cons
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
plus_x#1,
map#2They will be analysed ascendingly in the following order:
plus_x#1 < map#2
(6) Obligation:
Innermost TRS:
Rules:
plus_x#1(
0',
x8) →
x8plus_x#1(
S(
x12),
x14) →
S(
plus_x#1(
x12,
x14))
map#2(
plus_x(
x2),
Nil) →
Nilmap#2(
plus_x(
x6),
Cons(
x4,
x2)) →
Cons(
plus_x#1(
x6,
x4),
map#2(
plus_x(
x6),
x2))
main(
x5,
x12) →
map#2(
plus_x(
x12),
x5)
Types:
plus_x#1 :: 0':S → 0':S → 0':S
0' :: 0':S
S :: 0':S → 0':S
map#2 :: plus_x → Nil:Cons → Nil:Cons
plus_x :: 0':S → plus_x
Nil :: Nil:Cons
Cons :: 0':S → Nil:Cons → Nil:Cons
main :: Nil:Cons → 0':S → Nil:Cons
hole_0':S1_0 :: 0':S
hole_Nil:Cons2_0 :: Nil:Cons
hole_plus_x3_0 :: plus_x
gen_0':S4_0 :: Nat → 0':S
gen_Nil:Cons5_0 :: Nat → Nil:Cons
Generator Equations:
gen_0':S4_0(0) ⇔ 0'
gen_0':S4_0(+(x, 1)) ⇔ S(gen_0':S4_0(x))
gen_Nil:Cons5_0(0) ⇔ Nil
gen_Nil:Cons5_0(+(x, 1)) ⇔ Cons(0', gen_Nil:Cons5_0(x))
The following defined symbols remain to be analysed:
plus_x#1, map#2
They will be analysed ascendingly in the following order:
plus_x#1 < map#2
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
plus_x#1(
gen_0':S4_0(
n7_0),
gen_0':S4_0(
b)) →
gen_0':S4_0(
+(
n7_0,
b)), rt ∈ Ω(1 + n7
0)
Induction Base:
plus_x#1(gen_0':S4_0(0), gen_0':S4_0(b)) →RΩ(1)
gen_0':S4_0(b)
Induction Step:
plus_x#1(gen_0':S4_0(+(n7_0, 1)), gen_0':S4_0(b)) →RΩ(1)
S(plus_x#1(gen_0':S4_0(n7_0), gen_0':S4_0(b))) →IH
S(gen_0':S4_0(+(b, c8_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
plus_x#1(
0',
x8) →
x8plus_x#1(
S(
x12),
x14) →
S(
plus_x#1(
x12,
x14))
map#2(
plus_x(
x2),
Nil) →
Nilmap#2(
plus_x(
x6),
Cons(
x4,
x2)) →
Cons(
plus_x#1(
x6,
x4),
map#2(
plus_x(
x6),
x2))
main(
x5,
x12) →
map#2(
plus_x(
x12),
x5)
Types:
plus_x#1 :: 0':S → 0':S → 0':S
0' :: 0':S
S :: 0':S → 0':S
map#2 :: plus_x → Nil:Cons → Nil:Cons
plus_x :: 0':S → plus_x
Nil :: Nil:Cons
Cons :: 0':S → Nil:Cons → Nil:Cons
main :: Nil:Cons → 0':S → Nil:Cons
hole_0':S1_0 :: 0':S
hole_Nil:Cons2_0 :: Nil:Cons
hole_plus_x3_0 :: plus_x
gen_0':S4_0 :: Nat → 0':S
gen_Nil:Cons5_0 :: Nat → Nil:Cons
Lemmas:
plus_x#1(gen_0':S4_0(n7_0), gen_0':S4_0(b)) → gen_0':S4_0(+(n7_0, b)), rt ∈ Ω(1 + n70)
Generator Equations:
gen_0':S4_0(0) ⇔ 0'
gen_0':S4_0(+(x, 1)) ⇔ S(gen_0':S4_0(x))
gen_Nil:Cons5_0(0) ⇔ Nil
gen_Nil:Cons5_0(+(x, 1)) ⇔ Cons(0', gen_Nil:Cons5_0(x))
The following defined symbols remain to be analysed:
map#2
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
map#2(
plus_x(
0'),
gen_Nil:Cons5_0(
n546_0)) →
gen_Nil:Cons5_0(
n546_0), rt ∈ Ω(1 + n546
0)
Induction Base:
map#2(plus_x(0'), gen_Nil:Cons5_0(0)) →RΩ(1)
Nil
Induction Step:
map#2(plus_x(0'), gen_Nil:Cons5_0(+(n546_0, 1))) →RΩ(1)
Cons(plus_x#1(0', 0'), map#2(plus_x(0'), gen_Nil:Cons5_0(n546_0))) →LΩ(1)
Cons(gen_0':S4_0(+(0, 0)), map#2(plus_x(0'), gen_Nil:Cons5_0(n546_0))) →IH
Cons(gen_0':S4_0(0), gen_Nil:Cons5_0(c547_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
Innermost TRS:
Rules:
plus_x#1(
0',
x8) →
x8plus_x#1(
S(
x12),
x14) →
S(
plus_x#1(
x12,
x14))
map#2(
plus_x(
x2),
Nil) →
Nilmap#2(
plus_x(
x6),
Cons(
x4,
x2)) →
Cons(
plus_x#1(
x6,
x4),
map#2(
plus_x(
x6),
x2))
main(
x5,
x12) →
map#2(
plus_x(
x12),
x5)
Types:
plus_x#1 :: 0':S → 0':S → 0':S
0' :: 0':S
S :: 0':S → 0':S
map#2 :: plus_x → Nil:Cons → Nil:Cons
plus_x :: 0':S → plus_x
Nil :: Nil:Cons
Cons :: 0':S → Nil:Cons → Nil:Cons
main :: Nil:Cons → 0':S → Nil:Cons
hole_0':S1_0 :: 0':S
hole_Nil:Cons2_0 :: Nil:Cons
hole_plus_x3_0 :: plus_x
gen_0':S4_0 :: Nat → 0':S
gen_Nil:Cons5_0 :: Nat → Nil:Cons
Lemmas:
plus_x#1(gen_0':S4_0(n7_0), gen_0':S4_0(b)) → gen_0':S4_0(+(n7_0, b)), rt ∈ Ω(1 + n70)
map#2(plus_x(0'), gen_Nil:Cons5_0(n546_0)) → gen_Nil:Cons5_0(n546_0), rt ∈ Ω(1 + n5460)
Generator Equations:
gen_0':S4_0(0) ⇔ 0'
gen_0':S4_0(+(x, 1)) ⇔ S(gen_0':S4_0(x))
gen_Nil:Cons5_0(0) ⇔ Nil
gen_Nil:Cons5_0(+(x, 1)) ⇔ Cons(0', gen_Nil:Cons5_0(x))
No more defined symbols left to analyse.
(13) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
plus_x#1(gen_0':S4_0(n7_0), gen_0':S4_0(b)) → gen_0':S4_0(+(n7_0, b)), rt ∈ Ω(1 + n70)
(14) BOUNDS(n^1, INF)
(15) Obligation:
Innermost TRS:
Rules:
plus_x#1(
0',
x8) →
x8plus_x#1(
S(
x12),
x14) →
S(
plus_x#1(
x12,
x14))
map#2(
plus_x(
x2),
Nil) →
Nilmap#2(
plus_x(
x6),
Cons(
x4,
x2)) →
Cons(
plus_x#1(
x6,
x4),
map#2(
plus_x(
x6),
x2))
main(
x5,
x12) →
map#2(
plus_x(
x12),
x5)
Types:
plus_x#1 :: 0':S → 0':S → 0':S
0' :: 0':S
S :: 0':S → 0':S
map#2 :: plus_x → Nil:Cons → Nil:Cons
plus_x :: 0':S → plus_x
Nil :: Nil:Cons
Cons :: 0':S → Nil:Cons → Nil:Cons
main :: Nil:Cons → 0':S → Nil:Cons
hole_0':S1_0 :: 0':S
hole_Nil:Cons2_0 :: Nil:Cons
hole_plus_x3_0 :: plus_x
gen_0':S4_0 :: Nat → 0':S
gen_Nil:Cons5_0 :: Nat → Nil:Cons
Lemmas:
plus_x#1(gen_0':S4_0(n7_0), gen_0':S4_0(b)) → gen_0':S4_0(+(n7_0, b)), rt ∈ Ω(1 + n70)
map#2(plus_x(0'), gen_Nil:Cons5_0(n546_0)) → gen_Nil:Cons5_0(n546_0), rt ∈ Ω(1 + n5460)
Generator Equations:
gen_0':S4_0(0) ⇔ 0'
gen_0':S4_0(+(x, 1)) ⇔ S(gen_0':S4_0(x))
gen_Nil:Cons5_0(0) ⇔ Nil
gen_Nil:Cons5_0(+(x, 1)) ⇔ Cons(0', gen_Nil:Cons5_0(x))
No more defined symbols left to analyse.
(16) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
plus_x#1(gen_0':S4_0(n7_0), gen_0':S4_0(b)) → gen_0':S4_0(+(n7_0, b)), rt ∈ Ω(1 + n70)
(17) BOUNDS(n^1, INF)
(18) Obligation:
Innermost TRS:
Rules:
plus_x#1(
0',
x8) →
x8plus_x#1(
S(
x12),
x14) →
S(
plus_x#1(
x12,
x14))
map#2(
plus_x(
x2),
Nil) →
Nilmap#2(
plus_x(
x6),
Cons(
x4,
x2)) →
Cons(
plus_x#1(
x6,
x4),
map#2(
plus_x(
x6),
x2))
main(
x5,
x12) →
map#2(
plus_x(
x12),
x5)
Types:
plus_x#1 :: 0':S → 0':S → 0':S
0' :: 0':S
S :: 0':S → 0':S
map#2 :: plus_x → Nil:Cons → Nil:Cons
plus_x :: 0':S → plus_x
Nil :: Nil:Cons
Cons :: 0':S → Nil:Cons → Nil:Cons
main :: Nil:Cons → 0':S → Nil:Cons
hole_0':S1_0 :: 0':S
hole_Nil:Cons2_0 :: Nil:Cons
hole_plus_x3_0 :: plus_x
gen_0':S4_0 :: Nat → 0':S
gen_Nil:Cons5_0 :: Nat → Nil:Cons
Lemmas:
plus_x#1(gen_0':S4_0(n7_0), gen_0':S4_0(b)) → gen_0':S4_0(+(n7_0, b)), rt ∈ Ω(1 + n70)
Generator Equations:
gen_0':S4_0(0) ⇔ 0'
gen_0':S4_0(+(x, 1)) ⇔ S(gen_0':S4_0(x))
gen_Nil:Cons5_0(0) ⇔ Nil
gen_Nil:Cons5_0(+(x, 1)) ⇔ Cons(0', gen_Nil:Cons5_0(x))
No more defined symbols left to analyse.
(19) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
plus_x#1(gen_0':S4_0(n7_0), gen_0':S4_0(b)) → gen_0':S4_0(+(n7_0, b)), rt ∈ Ω(1 + n70)
(20) BOUNDS(n^1, INF)